Biography
Professor Robert A. Harris
Professor Robert A. Harris (Bob) was born in Harpenden in Southern UK in 1966. He conducted a Bsc.Hons undergraduate degree at Portsmouth Polytechnic, majoring in Parasitology in 1987. PhD studies at University College London studying innate immune agglutinins in Schistosoma host snail species with Terry Preston and Vaughan Southgate as supervisors culminated with a thesis defence in early 1991. A 2.5 year postdoc at the London School of Hygiene & Tropical Medicine in Paul Kaye’s research group ensued, with focus on understanding the intracellular fate of Leishmania spp. protozoans in macrophages. Bob was awarded a Wellcome Trust postdoctoral fellowship that permitted his relocation to the Karolinska Institutet (Stockholm, Sweden) in the spring of 1994. A postdoc period was spent split between the labs of Anders Örn and Tomas Olsson, in which he studied Trypanosoma cruzi and Trypanosoma bruceii protozoan proteins. Bob became an Associate Professor at the Karolinska Institutet in 1999, heralding his establishment as a PI. Bob started to work with autoimmune diseases in 1996 and began study of therapy using live parasite infections or parasite molecules. His research group has developed autoantigen-specific vaccines, defined the effects of post-translational biochemical molecules on autoantigenicity and developed a macrophage adoptive transfer therapy that prevents pathogenesis in several experimental disease models. He became Professor of Immunotherapy in Neurological Diseases in 2013. In recent years research focus has centred on understanding the immunopathogenesis of incurable neurodegenerative diseases, with particular emphasis on development of immunotherapies directed at microglial cells as potential therapeutic paradigms.
Bob Harris CV July 2020
ERIK HERLENIUS GROUP
Development of autonomic control
About
Immature or deficient autonomic control is a common problem in infants born at a premature age and is of central importance in apneas, secondary hypoxic brain damage and sudden infant death syndrome.
PER ERIKSSON GROUP
Research
For better understanding of disturbances in respiratory control we study early development of cardiorespiratory control, brainstem neural networks and its associations with normal and pathological breathing. The conceptual change introduced by our recent data that endogenous prostaglandins are central pathogenic factors in respiratory disorders and the hypoxic response, open new diagnostic and therapeutic avenues that should significantly better the diagnostics and treatment of newborns and adult patients.
Inflammation is a major culprit in breathing disorders and we hypothesize that by using a newly developed urinary prostaglandin biomarker we can screen, detect and protect against inflammation related breathing disorders.
Our collaborative efforts enable us to move from a clinical problem to molecular understanding of the disease and studies are performed in patients, animal & in vitro models.
Our research is focused on the development of autonomic control with normal and paediatric patients as the target. Autonomic dysfunction in breathing and circulatory control often has its origin in neurodevelopment disorders. Furthermore, our basic research in developmental neuroscience how neural activity and stem cells form activity dependent networks is vital for the development of therapeutic interventions.
Read more
Contact: communication@cmm.se


CENTER FOR MOLECULAR MEDICINE
ERIC HERLENIUS GROUP
Development of autonomic control
About
Immature or deficient autonomic control is a common problem in infants born at a premature age and is of central importance in apneas, secondary hypoxic brain damage and sudden infant death syndrome.
Research
For better understanding of disturbances in respiratory control we study early development of cardiorespiratory control, brainstem neural networks and its associations with normal and pathological breathing. The conceptual change introduced by our recent data that endogenous prostaglandins are central pathogenic factors in respiratory disorders and the hypoxic response, open new diagnostic and therapeutic avenues that should significantly better the diagnostics and treatment of newborns and adult patients.
Inflammation is a major culprit in breathing disorders and we hypothesize that by using a newly developed urinary prostaglandin biomarker we can screen, detect and protect against inflammation related breathing disorders.
Our collaborative efforts enable us to move from a clinical problem to molecular understanding of the disease and studies are performed in patients, animal & in vitro models.
Our research is focused on the development of autonomic control with normal and paediatric patients as the target. Autonomic dysfunction in breathing and circulatory control often has its origin in neurodevelopment disorders. Furthermore, our basic research in developmental neuroscience how neural activity and stem cells form activity dependent networks is vital for the development of therapeutic interventions.
Selected publications
Forsberg D, Herlenius E. Astrocyte networks modulate respiration - sniffing glue. Respiratory physiology & neurobiology. 2018 Jun 30. pii: S1569-9048(18)30055-7.
Leifsdottir K, Mehmet H, Eksborg S, Herlenius E. Fas-ligand and interleukin-6 in the cerebrospinal fluid are early predictors of hypoxic-ischemic encephalopathy and long-term outcomes after birth asphyxia in term infants. Journal of neuroinflammation. 2018 Aug 8;15(1):223.
Caffeine For Apnea Of Prematurity (cap) Trial Group, Mürner-Lavanchy IM, Doyle LW, Schmidt B, Roberts RS, Asztalos EV, et al. Neurobehavioral Outcomes 11 Years After Neonatal Caffeine Therapy for Apnea of Prematurity. Pediatrics. 2018 May;141(5).
Caffeine For Apnea Of Prematurity (cap) Trial Group, Schmidt B, Roberts RS, Anderson PJ, Asztalos EV, Costantini L, et al. Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial. JAMA pediatrics. 2017 Jun 1;171(6):564-572.
Forsberg D, Ringstedt T, Herlenius E. Astrocytes release prostaglandin E2 to modify respiratory network activity. eLife. 2017 Oct 6;6.
Forsberg D, Thonabulsombat C, Jäderstad J, Jäderstad LM, Olivius P, Herlenius E. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures. Current protocols in stem cell biology. 2017;42():2D.13.1-2D.13.30.
Karalexi MA, Dessypris N, Skalkidou A, Biniaris-Georgallis S, Kalogirou ΕΙ, Thomopoulos TP, Herlenius E, et al. Maternal fetal loss history and increased acute leukemia subtype risk in subsequent offspring: a systematic review and meta-analysis. Cancer Causes Control. 2017 Jun;28(6):599-624.
Dyberg C, Fransson S, Andonova T, Sveinbjörnsson B, Lännerholm-Palm J, Olsen TK, et al. Rho-associated kinase is a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6603-E6612.
Herlenius E. Unexpected, unexplained and life-threatening events in infants are age-dependent descriptive syndromes with different risk and management. Acta paediatrica (Oslo, Norway : 1992) 2017;106(2):191-193.
Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. eLife. 2016 Jul 5;5.