Biography
Professor Robert A. Harris
Professor Robert A. Harris (Bob) was born in Harpenden in Southern UK in 1966. He conducted a Bsc.Hons undergraduate degree at Portsmouth Polytechnic, majoring in Parasitology in 1987. PhD studies at University College London studying innate immune agglutinins in Schistosoma host snail species with Terry Preston and Vaughan Southgate as supervisors culminated with a thesis defence in early 1991. A 2.5 year postdoc at the London School of Hygiene & Tropical Medicine in Paul Kaye’s research group ensued, with focus on understanding the intracellular fate of Leishmania spp. protozoans in macrophages. Bob was awarded a Wellcome Trust postdoctoral fellowship that permitted his relocation to the Karolinska Institutet (Stockholm, Sweden) in the spring of 1994. A postdoc period was spent split between the labs of Anders Örn and Tomas Olsson, in which he studied Trypanosoma cruzi and Trypanosoma bruceii protozoan proteins. Bob became an Associate Professor at the Karolinska Institutet in 1999, heralding his establishment as a PI. Bob started to work with autoimmune diseases in 1996 and began study of therapy using live parasite infections or parasite molecules. His research group has developed autoantigen-specific vaccines, defined the effects of post-translational biochemical molecules on autoantigenicity and developed a macrophage adoptive transfer therapy that prevents pathogenesis in several experimental disease models. He became Professor of Immunotherapy in Neurological Diseases in 2013. In recent years research focus has centred on understanding the immunopathogenesis of incurable neurodegenerative diseases, with particular emphasis on development of immunotherapies directed at microglial cells as potential therapeutic paradigms.
Bob Harris CV July 2020
ERIK HERLENIUS GROUP
Development of autonomic control
About
Immature or deficient autonomic control is a common problem in infants born at a premature age and is of central importance in apneas, secondary hypoxic brain damage and sudden infant death syndrome.
PER ERIKSSON GROUP
Research
For better understanding of disturbances in respiratory control we study early development of cardiorespiratory control, brainstem neural networks and its associations with normal and pathological breathing. The conceptual change introduced by our recent data that endogenous prostaglandins are central pathogenic factors in respiratory disorders and the hypoxic response, open new diagnostic and therapeutic avenues that should significantly better the diagnostics and treatment of newborns and adult patients.
Inflammation is a major culprit in breathing disorders and we hypothesize that by using a newly developed urinary prostaglandin biomarker we can screen, detect and protect against inflammation related breathing disorders.
Our collaborative efforts enable us to move from a clinical problem to molecular understanding of the disease and studies are performed in patients, animal & in vitro models.
Our research is focused on the development of autonomic control with normal and paediatric patients as the target. Autonomic dysfunction in breathing and circulatory control often has its origin in neurodevelopment disorders. Furthermore, our basic research in developmental neuroscience how neural activity and stem cells form activity dependent networks is vital for the development of therapeutic interventions.
Read more
Contact: communication@cmm.se


CENTER FOR MOLECULAR MEDICINE
PEDER S. OLOFSSON GROUP
About
Technology is changing the world and bioelectronic medicine is at the forefront of this technological revolution. The pharmaceutical industry's history is based on therapies that target molecular mechanisms, yet these therapies are expensive, difficult to administer, often toxic, and may be accompanied by lethal side effects. Bioelectronic medicine — the convergence of molecular medicine; neuroscience and biology; and electronics and computing to develop cures — may change the future of therapies for a wide variety of diseases. This groundbreaking discipline is aimed at interfacing electronics with nerves to specifically target the biological processes underlying disease. Bioelectronic medicine is now at the epicenter of where healthcare, technology, and science converge. A unique moment exists to characterize the challenges and opportunities facing the future of this scientific domain.
Selected Publications
Bruck E, Lasselin J, The HICUS Study Group, Andersson U, Sackey PV, Olofsson PS. Prolonged elevation of plasma HMGB1 is associated with cognitive impairment in intensive care unit survivors. Intensive Care Med 2020 46:811–812.
Malin SG, Shavva V, Tarnawski L, Olofsson PS. Functions of acetylcholine-producing lymphocytes in immunobiology. Curr Opin Neurobiol. 2020 Jun;62:115-121.
Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural control of vascular inflammation. Bioelectron Med. 2020 Jan 31;6:3.
Peleli M, Ferreira DMS, Tarnawski L, McCann Haworth S, Xuechen L, Zhuge Z, et al. Dietary nitrate attenuates high-fat diet-induced obesity via mechanisms involving higher adipocyte respiration and alterations in inflammatory status. Redox Biol 2020 Jan;28:101387.
Caravaca AS, Gallina AL, Tarnawski L, Tracey KJ, Pavlov VA, Levine YA, et al. An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Front Neurosci 2019 ;13():877.
Olofsson PS, Bouton C. Bioelectronic medicine: an unexpected path to new therapies. J. Intern. Med. 2019 Sep;286(3):237-239
Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural Control of Inflammation: Bioelectronic Medicine in Treatment of Chronic Inflammatory Disease. Cold Spring Harb Perspect Med 2019 Jul;():
Brück E, Larsson JW, Lasselin J, Bottai M, Hirvikoski T, Sundman E, et al. Lack of clinically relevant correlation between subjective and objective cognitive function in ICU survivors: a prospective 12-month follow-up study. Crit Care 2019 07;23(1):253
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers 2019 Aug;5(1):56
Jiang X, Wang F, Wang Y, Gisterå A, Roy J, Paulsson-Berne G, et al. Inflammasome-Driven Interleukin-1α and Interleukin-1β Production in Atherosclerotic Plaques Relates to Hyperlipidemia and Plaque Complexity. JACC Basic Transl Sci 2019 Jun;4(3):304-317
Centa M, Ketelhuth DFJ, Malin S, Gisterå A. Quantification of Atherosclerosis in Mice. J Vis Exp 2019 Jun;(148):
Lehner KR, Silverman HA, Addorisio ME, Roy A, Al-Onaizi MA, Levine Y, et al. Forebrain Cholinergic Signaling Regulates Innate Immune Responses and Inflammation. Front Immunol 2019 ;10:585
Christersdottir T, Pirault J, Gisterå A, Bergman O, Gallina AL, Baumgartner R, et al. Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. Eur. Heart J. 2019 Aug;40(30):2495-2503
Centa M, Jin H, Hofste L, Hellberg S, Busch A, Baumgartner R, et al. Germinal Center-Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation 2019 May;139(21):2466-2482
Cox MA, Duncan GS, Lin GHY, Steinberg BE, Yu LX, Brenner D, et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science 2019 02;363(6427):639-644
Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand. J. Immunol. 2019 Mar;89(3):e12745
Hansson GK. Inflammation, protection, and the problems of translation. Nat Rev Cardiol 2018 Dec;15(12):729-730
Tarnawski L, Reardon C, Caravaca AS, Rosas-Ballina M, Tusche MW, Drake AR, et al. Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Front Immunol 2018 ;9():2648
Gisterå A, Klement ML, Polyzos KA, Mailer RKW, Duhlin A, Karlsson MCI, et al. Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation 2018 Nov;138(22):2513-2526
Centa M, Prokopec KE, Garimella MG, Habir K, Hofste L, Stark JM, et al. Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018 Aug;38(8):e145-e158
Söderström LÅ, Tarnawski L, Olofsson PS. CD137: A checkpoint regulator involved in atherosclerosis. Atherosclerosis 2018 May;272:66-72
Forteza MJ, Polyzos KA, Baumgartner R, Suur BE, Mussbacher M, Johansson DK, et al. Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Front Immunol 2018;9:950
Laguna-Fernandez A, Checa A, Carracedo M, Artiach G, Petri MH, Baumgartner R, et al. ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. Circulation 2018 Oct;138(16):1693-1705
Zaghloul N, Addorisio ME, Silverman HA, Patel HL, Valdés-Ferrer SI, Ayasolla KR, et al. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors. Front Immunol 2017 ;8:1673
Söderström LÅ, Jin H, Caravaca AS, Klement ML, Li Y, Gisterå A, et al. Increased Carotid Artery Lesion Inflammation Upon Treatment With the CD137 Agonistic Antibody 2A. Circ. J. 2017 Nov;81(12):1945-1952
Mailer RKW, Gisterå A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep 2017 Nov;7(1):15655
Consolim-Colombo FM, Sangaleti CT, Costa FO, Morais TL, Lopes HF, Motta JM, et al. Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight 2017 Jul;2(14):
Yang T, Zhang XM, Tarnawski L, Peleli M, Zhuge Z, Terrando N, et al. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol 2017 10;13:320-330
Olofsson PS, Tracey KJ. Bioelectronic medicine: technology targeting molecular mechanisms for therapy. J Intern Med 2017 07;282(1):3-4
French JA, Koepp M, Naegelin Y, Vigevano F, Auvin S, Rho JM, et al. Clinical studies and anti-inflammatory mechanisms of treatments. Epilepsia 2017 07;58 Suppl 3:69-82
Caravaca AS, Tsaava T, Goldman L, Silverman H, Riggott G, Chavan SS, et al. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J Neural Eng 2017 12;14(6):066005
Olofsson PS, Steinberg BE, Sobbi R, Cox MA, Ahmed MN, Oswald M, et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol 2016 Oct;34(10):1066-1071
Caravaca AS, Tsaava T, Goldman L, Silverman H, Riggott G, Chavan SS, et al. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J Neural Eng 2017 12;14(6):066005
Hudson LK, Dancho ME, Li J, Bruchfeld JB, Ragab AA, He MM, et al. Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice. Mol Med 2016 Oct;22:585-596
Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, et al. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight ;1(7):
Steinberg BE, Sundman E, Terrando N, Eriksson LI, Olofsson PS. Neural Control of Inflammation: Implications for Perioperative and Critical Care. Anesthesiology 2016 May;124(5):1174-89